Exercise 12

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

$$
f(x)=2 x^{2}-6 x
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=2\left(x^{2}-3 x\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-3$, which means $B=-\frac{3}{2}$ and $B^{2}=\frac{9}{4}$. Add and subtract $\frac{9}{4}$ on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =2\left[\left(x^{2}-3 x+\frac{9}{4}\right)-\frac{9}{4}\right] \\
& =2\left[\left(x+\left(-\frac{3}{2}\right)\right)^{2}-\frac{9}{4}\right] \\
& =2\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right] \\
& =2\left(x-\frac{3}{2}\right)^{2}-\frac{9}{2}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(\frac{3}{2},-\frac{9}{2}\right)$.

